COMPLEX NUMBER

(KEY CONCEPTS + SOLVED EXAMPLES)

1. The Real number system
2. Imaginary number
3. Complex number
4. Modulus of a complex number
5. Amplitude of a complex number
6. Square root of a complex number
7. Triangle inequalities
8. Miscellaneous results

1. The Real Number System

Natural Number (N) : The number which are used for counting are known as Natural Number (also known as set of Positive Integers) i.e.
$N=\{1,2,3$, \qquad ..)

Whole Number (\mathbf{W}) : If ' 0 ' is included in the set of natural numbers then we get the set of Whole Numbers i.e. $W=\{0,1,2, \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
$=\{\mathrm{N}\}+\{0\}$
Integers (\mathbf{Z} or I) :If negative natural number is included in the set of whole number then we get set of Integers i.e.
Z or $I=\{$ \qquad $-3,-2,-1,0,1,2,3$, \qquad ..)

Rational Numbers (\mathbf{Q}): The numbers which are in the form of p / q (Where $p, q \in I, q \neq 0$) are called as Rational Number e.g. $\sqrt{2}, \frac{2}{3}, 3, \frac{1}{3}$, $0.76,1.2322$ etc.

Irrational Numbers : The numbers which are not rational i.e. which can not be expressed in p/q form or whose decimal part is non terminating non repeating but which may represent magnitude of physical quantities. e.g., $5^{1 / 3}, \pi$, e,.....etc.
Real Numbers (R) : The set of Rational and Irrational Number is called as set of Real Numbers i.e. $\mathrm{N} \subset \mathrm{W} \subset \mathrm{Z} \subset \mathrm{Q} \subset \mathrm{R}$

Note :

(i) Number zero is neither positive nor negative but is an even number.
(ii) Square of a real number is always positive.
(iii) Between two real numbers there lie infinite real numbers.
(iv) The real number system is totally ordered, for any two numbers $a, b \in R$, we must say, either $\mathrm{a}<\mathrm{b}$ or $\mathrm{b}<\mathrm{a}$ or $\mathrm{b}=\mathrm{a}$.
(v) All real number can be represented by points on a straight line. This line is called as number line.
(vi) An Integer (Note) is said to be even, if it is divided by 2 other wise it is odd number.
(vii) The magnitude of a physical quantity may be expressed as a real number times, a standard unit.
(viii) Number ' 0 ' is an additive quantity
(ix) Number ' 1 ' is multiplicative quantity.
(x) Infinity (∞) is the concept of the number greater than greatest you can imagine. It is not a number, it is just a concept, so we do not associate equality with it.
(xi) Division by zero is meaning less.
(xii) A non zero integer p is called prime if $\mathrm{p} \neq \pm 1$ and its only divisors are ± 1 and $\pm \mathrm{p}$.

1.1 Modulus of a Real Number :

The Modulus of a real number x is defined as follows
$|x|=x \quad$ when $x>0$
$0 \quad$ when $x=0$
$-\mathrm{x} \quad$ when $\mathrm{x}<0$
e.g. $|3|=3 \quad|-6|=-(-6)=6$

Now $|x-a|=\left\{\begin{array}{cc}x-a & \text { when } x \geq a \\ -(x-a) & \text { when } x<a\end{array}\right.$
1.2 Intervals : Let $\mathrm{a}, \mathrm{x}, \mathrm{b}$ are real number so that
$\mathrm{x} \in[\mathrm{a}, \mathrm{b}] \quad \Rightarrow \quad \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$
[a, b] is known as the closed interval a, b
$x \in(a, b) \quad \Rightarrow a<x<b$
(a, b) is known as the open interval a, b
$x \in(a, b] \Rightarrow a<x \leq b$
($a, b]$ is known as semi open, semi closed Interval
$x \in[a, b) \quad \Rightarrow a \leq x<b$
[a, b) is known as semi closed, semi open Interval

2. Imaginary Number

Square root of a negative real number is an imaginary number, while solving equation $x^{2}+1$ $=0$ we get $x= \pm \sqrt{-1}$ which is imaginary. So the quantity $\sqrt{-1}$ is denoted by ' i ' called 'iota' thus $\mathrm{i}=\sqrt{-1}$

Further $\sqrt{-2}, \sqrt{-3}, \sqrt{-4}$ \qquad .may be expressed as $\pm \mathrm{i} \sqrt{2}, \pm \mathrm{i} \sqrt{3}, \pm 2 \mathrm{i}$ \qquad

2.1 Integral powers of iota

As we have seen $\quad i=\sqrt{-1}$ so $i^{2}=-1$

$$
\mathrm{i}^{3}=-\mathrm{i} \text { and } \mathrm{i}^{4}=1
$$

Hence $n \in N, i^{n}=i,-1,-i, 1$ attains four values according to the value of n, so

$$
\begin{array}{ll}
\mathrm{i}^{4 \mathrm{n}+1}=\mathrm{i}, & \mathrm{i}^{4 \mathrm{n}+2}=-1 \\
\mathrm{i}^{4 \mathrm{n}+3}=-\mathrm{i}, & \mathrm{i}^{4 \mathrm{n}} \text { or } \mathrm{i}^{4 \mathrm{n}+4}=1
\end{array}
$$

In other words $\mathrm{i}^{\mathrm{n}}=(-1)^{\mathrm{n} / 2}$ if n is even integer

$$
\mathrm{i}^{\mathrm{n}}=(-1)^{\frac{\mathrm{n}-1}{2}} \mathrm{i} \text { if } \mathrm{n} \text { is odd integer. }
$$

Note :-
(i) $\mathrm{i}^{2}=\mathrm{i} \times \mathrm{i}=\sqrt{-1} \times \sqrt{-1} \neq \sqrt{1}$
(ii) $\sqrt{\mathrm{a} \cdot \mathrm{b}}=\sqrt{\mathrm{a}} \cdot \sqrt{\mathrm{b}}$ possible iff both a, b are non-negative. (incorrect). It is also true for one positive and one negative no.
e.g. $\sqrt{(-2)(3)}=\sqrt{-2} \cdot \sqrt{3}$
only invalid when both are negative means $\sqrt{\mathrm{a} \cdot \mathrm{b}} \neq \sqrt{\mathrm{a}} \cdot \sqrt{\mathrm{b}}$ iff $\mathrm{a} \& \mathrm{~b}$ both are negative.
(iii) ' i ' is neither positive, zero nor negative, Due to this reason order relations are not defined for imaginary numbers.

3. Complex Number

A number of the form $\mathrm{z}=\mathrm{x}+$ iy where $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ and $i=\sqrt{-1}$ is called a complex number where x is called as real part and y is called imaginary part of complex number and they are expressed as
$\operatorname{Re}(\mathrm{z})=\mathrm{x}, \operatorname{Im}(\mathrm{z})=\mathrm{y}$
Here if $\mathrm{x}=0$ the complex number is purely Imaginary and if $\mathrm{y}=0$ the complex number is purely Real.

A complex number may also be defined as an ordered pair of real numbers any may be denoted by the symbol (a, b). If we write $z=(a, b)$ then a is called the real part and b the imaginary part of the complex number z .

Note :

(i) Inequalities in complex number are not defined because ' i ' is neither positive, zero nor negative so $4+3 \mathrm{i}<1+2 \mathrm{i}$ or $\mathrm{i}<0$
or $\mathrm{i}>0$ is meaning less.
(ii) If two complex numbers are equal, then their real and imaginary parts are separately equal. Thus if $a+i b=c+i d$
$\Rightarrow \mathrm{a}=\mathrm{c}$ and $\mathrm{b}=\mathrm{d}$
so if $\mathrm{z}=0 \Rightarrow \mathrm{x}+\mathrm{iy}=0 \Rightarrow \mathrm{x}=0$ and $\mathrm{y}=0$
The student must note that
$x, y \in R$ and $x, y \neq 0$. Then if
$x+y=0 \Rightarrow x=y$ is correct
but $x+i y=0 \Rightarrow x=-i y$ is incorrect
Hence a real number cannot be equal to the imaginary number, unless both are zero.
(iii) The complex number 0 is purely real and purely imaginary both.

3.1 Representation of a Complex Number :

(a) Cartesian Representation :

The complex number $\mathrm{z}=\mathrm{x}+\mathrm{iy}=(\mathrm{x}, \mathrm{y})$ is represented by a point P whose coordinates are refered to rectangular axis xox' and yoy', which are called real and imaginary axes respectively. Thus a complex number z is represented by a point in a plane, and corresponding to every point in this plane there exists a complex number such a plane is called Argand plane or Argand diagram or complex plane or gussian plane.

Note :

(i) Distance of any complex number from the origin is called the modulus of complex number and is denoted by $|z|$. Thus, $|z|=\sqrt{x^{2}+y^{2}}$.
(ii) Angle of any complex number with positive direction of x-axis is called amplitude or $\operatorname{argument}$ of z . Thus, $\operatorname{amp}(\mathrm{z})=\arg (\mathrm{z})=\theta$ $=\tan ^{-1} \frac{y}{x}$.
(b) Polar Representation : If $\mathrm{z}=\mathrm{x}+$ iy is a complex number then $\mathrm{z}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$ is a polar form of complex number z where $x=r \cos \theta, y=r \sin \theta$ and $r=\sqrt{x^{2}+y^{2}}=|z|$.
(c) Exponential Form : If $\mathrm{z}=\mathrm{x}+$ iy is a complex number then its exponential form is $z=r e^{i \theta}$ where r is modulas and θ is amplitude of complex number.
(d) Vector Representation : If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ is a complex number such that it represent point $P(x, y)$ then its vector representation is $\mathrm{z}=\overrightarrow{\mathrm{OP}}$

3.2 Algebraic operations with Complex Number:

Addition $(\mathrm{a}+\mathrm{ib})+(\mathrm{c}+\mathrm{id})=(\mathrm{a}+\mathrm{c})+\mathrm{i}(\mathrm{b}+\mathrm{d})$
Subtraction $(a+i b)-(c+i d)=(a-c)+i(b-d)$
Multiplication $(a+i b)(c+i d)=a c+i a d+i b c+i^{2} b d$

$$
=(\mathrm{ac}-\mathrm{bd})+\mathrm{i}(\mathrm{ad}+\mathrm{bc})
$$

Division $\frac{a+i b}{c+i d}=\frac{(a+i b)(c-i d)}{(c+i d)(c-i d)}$
(when at least one of c and d is non zero)

$$
=\frac{(a c+b d)}{c^{2}+d^{2}}+i \frac{(b c-a d)}{c^{2}+d^{2}}
$$

3.2.1 Properties of Algebraic operations with Complex Number

Let $\mathrm{z}, \mathrm{z}_{1}, \mathrm{z}_{2}$ and z_{3} are any complex number then their algebraic operation satisfy following properties-

Commutativity: $\mathrm{Z}_{1}+\mathrm{Z}_{2}=\mathrm{Z}_{2}+\mathrm{Z}_{1} \quad \& \quad \mathrm{Z}_{1} \mathrm{Z}_{2}=\mathrm{Z}_{2} \mathrm{Z}_{1}$
Associativity : $\left(\mathrm{z}_{1}+\mathrm{z}_{2}\right)+\mathrm{z}_{3}=\mathrm{z}_{1}+\left(\mathrm{z}_{2}+\mathrm{z}_{3}\right)$

$$
\text { and }\left(\mathrm{z}_{1} \mathrm{z}_{2}\right) \mathrm{z}_{3}=\mathrm{z}_{1}\left(\mathrm{z}_{2} \mathrm{z}_{3}\right)
$$

Identity element : If $\mathrm{O}=(0,0)$ and $1=(1,0)$ then $\mathrm{z}+0=0+\mathrm{z}=\mathrm{z}$ and $\mathrm{z} .1=1 . \mathrm{z}=\mathrm{z}$. Thus 0 and 1 are the identity elements for addition and multiplication respectively.

Inverse element : Additive inverse of z is -z and multiplicative inverse of z is $\frac{1}{\mathrm{z}}$.

Cancellation Law :

$$
\begin{aligned}
& \left.\begin{array}{l}
\mathrm{z}_{1}+\mathrm{z}_{2}=\mathrm{z}_{1}+\mathrm{z}_{3} \\
\mathrm{z}_{2}+\mathrm{z}_{1}=\mathrm{z}_{3}+\mathrm{z}_{1}
\end{array}\right\} \Rightarrow \mathrm{z}_{2}=\mathrm{z}_{3} \\
\text { and } \mathrm{z}_{1} \neq 0 & \left.\begin{array}{l}
\mathrm{z}_{1} \mathrm{z}_{2}=\mathrm{z}_{1} \mathrm{z}_{3} \\
\mathrm{z}_{2} \mathrm{z}_{1}=\mathrm{z}_{3} \mathrm{z}_{1}
\end{array}\right\} \quad \Rightarrow \mathrm{z}_{2}=\mathrm{z}_{3}
\end{aligned}
$$

Distributivity: $\mathrm{z}_{1}\left(\mathrm{z}_{2}+\mathrm{Z}_{3}\right)=\mathrm{Z}_{1} \mathrm{Z}_{2}+\mathrm{Z}_{1} \mathrm{Z}_{3}$

$$
\text { and } \quad\left(\mathrm{z}_{2}+\mathrm{z}_{3}\right) \mathrm{z}_{1}=\mathrm{z}_{2} \mathrm{z}_{1}+\mathrm{z}_{3} \mathrm{z}_{1}
$$

3.3 Conjugate Complex Number :

The complex numbers $\mathrm{z}=(\mathrm{a}, \mathrm{b})=\mathrm{a}+\mathrm{ib}$ and $\overline{\mathrm{z}}=(\mathrm{a},-\mathrm{b})=\mathrm{a}-\mathrm{ib}$ where $\mathrm{b} \neq 0$ are said to be complex conjugate of each other (Here the complex conjugate is obtained by just changing the sign of i) e.g.conjugate of $z=-3+4 i$ is $\overline{\mathrm{z}}=-3-4 \mathrm{i}$.

Note : Image of any complex number in x -axis is called its conjugate.

3.3.1 Properties of Conjugate Complex Number

Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}$ and $\overline{\mathrm{z}}=\mathrm{a}-\mathrm{ib}$ then
(i) $\overline{(\overline{\mathrm{z}})}=\mathrm{z}$
(ii) $\mathrm{z}+\overline{\mathrm{z}}=2 \mathrm{a}=2 \operatorname{Re}(\mathrm{z})=$ purely real
(iii) $\mathrm{z}-\overline{\mathrm{z}}=2 \mathrm{ib}=2 \mathrm{i} \operatorname{Im}(\mathrm{z})=$ purely imaginary
(iv) $\mathrm{z} \overline{\mathrm{z}}=\mathrm{a}^{2}+\mathrm{b}^{2}=|\mathrm{z}|^{2}$
(v) $\overline{\mathrm{z}_{1}+\mathrm{z}_{2}}=\overline{\mathrm{z}_{1}}+\overline{\mathrm{z}_{2}}$
(vi) $\overline{\mathrm{z}_{1}-\mathrm{z}_{2}}=\overline{\mathrm{z}_{1}}-\overline{\mathrm{z}_{2}}$
(vii) $\overline{\mathrm{re}^{\mathrm{i} \theta}}=\mathrm{re}^{-\mathrm{i} \theta}$
(viii) $\overline{\left(\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}\right)}=\frac{\overline{\mathrm{z}}_{1}}{\overline{\mathrm{z}}_{2}}$
(ix) $\overline{\mathrm{z}^{\mathrm{n}}}=(\overline{\mathrm{z}})^{\mathrm{n}}$
(x) $\overline{\mathrm{z}_{1} \mathrm{z}_{2}}=\overline{\mathrm{z}_{1}} \overline{\mathrm{z}_{2}}$
(xi) $\mathrm{z}+\overline{\mathrm{z}}=0$ or $\mathrm{z}=-\overline{\mathrm{z}}$
$\Rightarrow \mathrm{z}=0$ or z is purely imaginary
(xii) $\mathrm{z}=\overline{\mathrm{Z}} \Rightarrow \mathrm{z}$ is purely real

4. Modulus of a Complex Number

If $\mathrm{z}=\mathrm{x}+$ iy then modulus of z is equal to $\sqrt{x^{2}+y^{2}}$ and it is denoted by $|z|$. Thus
$z=x+i y \Rightarrow|z|=\sqrt{x^{2}+y^{2}}$
Note :
Modulus of every complex number is a non negative real number.
4.1 Properties of modulus of a Complex Number
(i) $|z| \geq 0$
(ii) $-|z| \leq \operatorname{Re}(\mathrm{z}) \leq|\mathrm{z}|$
(iii) $-|z| \leq \operatorname{Im}(\mathrm{z}) \leq|\mathrm{z}|$
(iv) $|\mathrm{z}|=|\overline{\mathrm{z}}|=|-\mathrm{z}|=|-\overline{\mathrm{z}}|$
(v) $\mathrm{z} \overline{\mathrm{z}}=|\mathrm{z}|^{2}$
(vi) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(vii) $\left|\frac{z_{1}}{\mathrm{z}_{2}}\right|=\frac{\left|\mathrm{z}_{1}\right|}{\left|\mathrm{z}_{2}\right|}\left(\mathrm{z}_{2} \neq 0\right)$
(viii) $|z|^{n}=\left|z^{n}\right|, n \in N$
(ix) $|\mathrm{z}|=1 \Leftrightarrow \overline{\mathrm{z}}=\frac{1}{\mathrm{z}}$
(x) $\quad z^{-1}=\frac{\bar{z}}{|z|^{2}}$
(xi) $\left|\mathrm{z}_{1} \pm \mathrm{z}_{2}\right|^{2}=\left|\mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2} \pm 2 \operatorname{Re}\left(\mathrm{z}_{1} \overline{\mathrm{z}}_{2}\right)$
(xii) $\left|\mathrm{z}_{1}+\mathrm{z}_{2}\right|^{2}+\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right|^{2}=2\left[\left|\mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2}\right]$
(xiii) $\quad\left|\mathrm{re}^{\mathrm{i} \theta}\right|=\mathrm{r}$
5. Amplitude or Argument of a Complex Number

The amplitude or argument of a complex number z is the inclination of the directed line segment representing z , with real axis.

If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ then

$$
\operatorname{amp}(\mathrm{z})=\tan ^{-1}\left(\frac{\mathrm{y}}{\mathrm{x}}\right)
$$

For finding the argument of any complex number first check that the complex number is in which quadrant and then find the angle θ and amplitude using the adjacent figure.

$\pi-\theta$	
$(-,+)$	θ $(+,+)$
$(-,-)$ $-(\pi-\theta)$	$(+,-)$ $-\theta$

Note :

(i) Principle value of any complex number lies between $-\pi<\theta \leq \pi$.
(ii) Amplitude of a complex number is a many valued function. If θ is the argument of a complex number then $(2 n \pi+\theta)$ is also argument of complex number.
(iii) Argument of zero is not defined.
(iv) If a complex number is multiplied by iota (i) its amplitude will be increased by $\pi / 2$ and will be decreased by $\pi / 2$, if is multiplied by -i .
(v) Amplitude of complex number in I and II quadrant is always positive and in III and IV is always negative.
5.1 Properties of argument of a Complex Number
(i) $\mathrm{amp}($ any real positive number) $=0$
(ii) amp (any real negative number) $=\pi$
(iii) $\operatorname{amp}(\mathrm{z}-\overline{\mathrm{z}})= \pm \pi / 2$
(iv) $\operatorname{amp}\left(\mathrm{Z}_{1} \cdot \mathrm{Z}_{2}\right)=\operatorname{amp}\left(\mathrm{Z}_{1}\right)+\operatorname{amp}\left(\mathrm{z}_{2}\right)$
(v) $\operatorname{amp}\left(\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}\right)=\operatorname{amp}\left(\mathrm{z}_{1}\right)-\operatorname{amp}\left(\mathrm{z}_{2}\right)$
(vi) $\operatorname{amp}(\bar{z})=-\operatorname{amp}(z)=\operatorname{amp}(1 / z)$
(vii) $\operatorname{amp}(-z)=\operatorname{amp}(z) \pm \pi$
(viii) $\operatorname{amp}\left(z^{\mathrm{n}}\right)=\mathrm{n} \operatorname{amp}(\mathrm{z})$
(ix) $\operatorname{amp}(\mathrm{iy})=\pi / 2 \quad$ if $y>0$
$=-\pi / 2$, if $\mathrm{y}<0$
$(\mathrm{x}) \operatorname{amp}(\mathrm{z})+\operatorname{amp}(\overline{\mathrm{z}})=0$

6. Square root of a Complex Number

The square root of $z=a+i b$ is -
$\sqrt{a+i b}= \pm\left[\sqrt{\frac{|z|+a}{2}}+i \sqrt{\frac{|z|-a}{2}}\right]$ for $b>0$
and $\pm\left[\sqrt{\frac{|z|+a}{2}}-i \sqrt{\frac{|z|-a}{2}}\right]$ for $b<0$
Note :
(i) The square root of i is $\pm\left(\frac{1+i}{\sqrt{2}}\right)($ Here $b=1)$
(ii) The square root of $-i$ is $\pm\left(\frac{1-i}{\sqrt{2}}\right)($ Here $b=-1)$
(iii) The square root of ω is $\pm \omega^{2}$
(iv) The square root of ω^{2} is $\pm \omega$

7. Triangle Inequalities

(i) $\left|\mathrm{z}_{1} \pm \mathrm{z}_{2}\right| \leq\left|\mathrm{z}_{1}\right|+\left|\mathrm{z}_{2}\right|$
(ii) $\left|\mathrm{z}_{1} \pm \mathrm{z}_{2}\right| \geq\left|\mathrm{z}_{1}\right|-\left|\mathrm{z}_{2}\right|$

8. Miscellaneous Results

(i) If ABC is an equilateral triangle having vertices $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ then $\mathrm{z}_{1}{ }^{2}+\mathrm{z}_{2}{ }^{2}+\mathrm{z}_{3}{ }^{2}$

$$
\begin{aligned}
& =\mathrm{z}_{1} \mathrm{z}_{2}+\mathrm{z}_{2} \mathrm{z}_{3}+\mathrm{z}_{3} \mathrm{z}_{1} \\
\text { or } & \frac{1}{\mathrm{z}_{1}-\mathrm{z}_{2}}+\frac{1}{\mathrm{z}_{2}-\mathrm{z}_{3}}+\frac{1}{\mathrm{z}_{3}-\mathrm{z}_{1}}=0 .
\end{aligned}
$$

(ii) If $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \mathrm{z}_{4}$ are vertices of parallelogram then $\mathrm{Z}_{1}+\mathrm{Z}_{3}=\mathrm{Z}_{2}+\mathrm{Z}_{4}$.
(iii) Let $\mathrm{z}_{1}=\mathrm{x}_{1}+\mathrm{iy} \mathrm{y}_{1}$ and $\mathrm{z}_{2}=\mathrm{x}_{2}+\mathrm{iy} \mathrm{y}_{2}$ be two complex numbers represented by points P and Q respectively in Argand Plane then -

$$
\begin{aligned}
\mathrm{PQ} & =\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}} \\
& =\left|\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)+\mathrm{i}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)\right|=\left|\mathrm{z}_{2}-\mathrm{z}_{1}\right|
\end{aligned}
$$

(iv) If a point P divides $A B$ in the ratio of $m: n$, then $\mathrm{z}=\frac{\mathrm{mz}_{2}+\mathrm{n} \mathrm{z}_{1}}{\mathrm{~m}+\mathrm{n}}$ where $\mathrm{z}_{1}, \mathrm{z}_{2}$ and z represents the point A, B and P respectively.
(v) $\left|\mathrm{z}-\mathrm{z}_{1}\right|=\left|\mathrm{z}-\mathrm{z}_{2}\right|$ represents a perpendicular bisector of the line segment joining the points Z_{1} and z_{2}.
(vi) Let P be any point on a circle whose centre C and radius r , let the affixes of P and C be z and z_{0} then $\left|\mathrm{z}-\mathrm{z}_{0}\right|=\mathrm{r}$.
(a) Again if $\left|\mathrm{z}-\mathrm{z}_{0}\right|<\mathrm{r}$ represent interior of the circle of radius r.
(b) $\left|\mathrm{z}-\mathrm{z}_{0}\right|>\mathrm{r}$ represent exterior of the circle of radius r.
(vii) Let $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}$ be the affixes of $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ respectively in the Argand Plane. Then from the figure the angle between PQ and PR is.

$$
\begin{aligned}
\theta & =\theta_{2}-\theta_{1} \\
& =\arg \cdot \overrightarrow{\mathrm{PR}}-\arg \overrightarrow{\mathrm{PQ}} \\
& =\arg \left(\frac{\mathrm{z}_{3}-\mathrm{z}_{1}}{\mathrm{z}_{2}-\mathrm{z}_{1}}\right)
\end{aligned}
$$

(a) If $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ are collinear, thus $\theta=0$ therefore $\frac{\mathrm{z}_{3}-\mathrm{z}_{1}}{\mathrm{z}_{2}-\mathrm{z}_{1}}$ is purely real.
(b) If $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ are such that $\mathrm{PR} \perp \mathrm{PQ}$, $\theta=\pi / 2$ So $\frac{\mathrm{z}_{3}-\mathrm{z}_{1}}{\mathrm{z}_{2}-\mathrm{z}_{1}}$ is purely imaginary.

Ex. $1 \sqrt{-2} \sqrt{-3}$ is equal to -
(A) $\mathrm{i} \sqrt{6}$
(B) $-\sqrt{6}$
(C) $\sqrt{6}$
(D) None of these

Sol. $\quad \sqrt{-2} \times \sqrt{-3}=\sqrt{2} \mathrm{i} \times \sqrt{3} \mathrm{i}$

$$
=\sqrt{6}(i)^{2}=-\sqrt{6} \quad \text { Ans. }[B]
$$

Ex. 2 If x be real, the relation in a and b, when $\frac{1-i x}{1+i x}=a-i b$, is
(A) $\mathrm{ab}=1$
(B) $\mathrm{a}^{2}-\mathrm{b}^{2}=1$
(C) $a^{2}+b^{2}=1$
(D) None of these

Sol. $\quad \because \frac{1-\mathrm{ix}}{1+\mathrm{ix}}=\mathrm{a}-\mathrm{ib}$
on taking modulus; we get

$$
\begin{aligned}
& |a-i b|=\left|\frac{1-i x}{1+i x}\right| \\
\Rightarrow & \sqrt{a^{2}+b^{2}}=\left|\frac{1-i x}{1+i x}\right|=\frac{|1-i x|}{|1+i x|}=1 \\
\therefore & a^{2}+b^{2}=1
\end{aligned}
$$

Ans.[3]
Ex. 3 If the vertices of any quadrilateral are
$\mathrm{A}=1+2 \mathrm{i}, \mathrm{B}=-3+\mathrm{i}, \mathrm{C}=-2-3 \mathrm{i}$, and
$\mathrm{D}=2-2 \mathrm{i}$, then it is-
(A) Parallelogram
(B) Rhombus
(C) Square
(D) Rectangle

Sol. $\quad \mathrm{A}=(1,2), \mathrm{B}=(-3,1)$
$\mathrm{C}=(-2,-3), \mathrm{D}=(2,-2)$
$\therefore \mathrm{AB}=\sqrt{(-3-1)^{2}+(1-2)^{2}}=\sqrt{17}$
$\mathrm{BC}=\sqrt{(-2+3)^{2}+(-3-1)^{2}}=\sqrt{17}$
$\mathrm{CD}=\sqrt{(2+2)^{2}+(-2+3)^{2}}=\sqrt{17}$
$\mathrm{DA}=\sqrt{(1-2)^{2}+(2+2)^{2}}=\sqrt{17}$
Diagonal $\mathrm{AC}=\sqrt{(-2-1)^{2}+(-3-2)^{2}}=\sqrt{34}$
and $\mathrm{BD}=\sqrt{(2+3)^{2}+(-2-1)^{2}}=\sqrt{34}$
$\because \quad \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ and $\mathrm{AC}=\mathrm{BD}$
$\therefore \quad \mathrm{ABCD}$ is a square

Ans.[3]

Ex. 4 If $\mathrm{z}=\left(\frac{1}{2}, 1\right)$, then the value of z^{-1} is-
(A) $\left(-\frac{2}{5}, \frac{4}{5}\right)$
(B) $\left(\frac{1}{5},-\frac{2}{5}\right)$
(C) $\left(\frac{1}{5}, \frac{2}{5}\right)$
(D) $\left(\frac{2}{5},-\frac{4}{5}\right)$

Sol. $\quad z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{(1 / 2)-\mathrm{i}}{(1 / 2)^{2}+1}=\frac{2}{5}-\frac{4}{5} \mathrm{i}$

$$
=\left(\frac{2}{5},-\frac{4}{5}\right)
$$

Ans.[D]

Ex. 5 If $\frac{\tan \theta-\mathrm{i}\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2}\right)}{1+2 \mathrm{i} \sin \frac{\theta}{2}}$ is purely imaginary then general value of θ is-
(A) $n \pi+\frac{\pi}{4}$
(B) $2 \mathrm{n} \pi+\frac{\pi}{4}$
(C) $\mathrm{n} \pi+\frac{\pi}{2}$
(D) $2 \mathrm{n} \pi+\frac{\pi}{2}$

Sol. Multiply above and below by conjugate of denominator and put real part equal to zero.

$$
\begin{gathered}
=\frac{\tan \theta-\mathrm{i}\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2}\right)}{1+2 \mathrm{i} \sin \frac{\theta}{2}} \times \frac{1-2 \mathrm{i} \sin \frac{\theta}{2}}{1-2 \mathrm{i} \sin \frac{\theta}{2}} \\
=\frac{\tan \theta-2 \sin \frac{\theta}{2}\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2}\right)-\mathrm{i}\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2}+2 \tan \theta \sin \frac{\theta}{2}\right)}{1+4 \sin ^{2} \frac{\theta}{2}} \\
\\
\therefore \tan \theta-2 \sin \frac{\theta}{2}\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2}\right)=0 \\
\Rightarrow \frac{\sin \theta}{\cos \theta}-(1-\cos \theta)-\sin \theta=0 \\
\Rightarrow \sin \theta\left(\frac{1-\cos \theta}{\cos \theta}\right)-(1-\cos \theta)=0 \\
\Rightarrow(1-\cos \theta)(\tan \theta-1)=0 \\
\cos \theta=1 \Rightarrow \theta=2 \mathrm{n} \pi \text { and } \\
\tan \theta=1 \Rightarrow \theta=\mathrm{n} \pi+\frac{\pi}{4}
\end{gathered}
$$

Ex. 6 For any two non real complex numbers z_{1}, z_{2} if $z_{1}+z_{2}$ and $z_{1} z_{2}$ are real numbers, then
(A) $z_{1}=1 / z_{2}$
(B) $\mathrm{z}_{1}=\overline{\mathrm{z}}_{2}$
(C) $\mathrm{z}_{1}=-\mathrm{Z}_{2}$
(D) $\mathrm{z}_{1}=\mathrm{Z}_{2}$

Sol. Let $\mathrm{z}_{1}=\mathrm{a}+\mathrm{ib}$ and $\mathrm{z}_{2}=\mathrm{c}+\mathrm{id}(\mathrm{b} \neq 0, \mathrm{~d} \neq 0)$.
Then $\mathrm{z}_{1}+\mathrm{z}_{2}$ and $\mathrm{z}_{1} \mathrm{z}_{2}$ are real
$\Rightarrow \mathrm{b}+\mathrm{d}=0$ and $\mathrm{ad}+\mathrm{bc}=0$
$\Rightarrow \mathrm{d}=-\mathrm{b}$ and $\mathrm{c}=\mathrm{a}(\because \mathrm{b} \neq 0, \mathrm{~d} \neq 0)$
$\Rightarrow \mathrm{z}_{1}=\overline{\mathrm{z}}_{2}$
Ans.[B]

Ex. 7 In a complex plane $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \mathrm{z}_{4}$ taken in order are vertices of parallelogram if
(A) $\mathrm{z}_{1}+\mathrm{z}_{2}=\mathrm{z}_{3}+\mathrm{z}_{4}$
(B) $\mathrm{z}_{1}+\mathrm{z}_{3}=\mathrm{z}_{2}+\mathrm{z}_{4}$
(C) $\mathrm{z}_{1}+\mathrm{z}_{4}=\mathrm{z}_{2}+\mathrm{z}_{3}$
(D) None of these

Sol. Let the given points be $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ respectively. Then ABCD is a parallelogram, so-

$$
\begin{aligned}
\overrightarrow{\mathrm{AB}} & =\overrightarrow{\mathrm{DC}} \\
\Rightarrow & \mathrm{z}_{2}-\mathrm{z}_{1}=\mathrm{z}_{3}-\mathrm{z}_{4} \\
\Rightarrow & \mathrm{z}_{1}+\mathrm{z}_{3}=\mathrm{z}_{2}+\mathrm{z}_{4}
\end{aligned}
$$

Ans.[B]

Ex. 8 The complex numbers $\sin x+i \cos 2 x$ and \cos $x-i \sin 2 x$ are conjugate to each other when-
(A) $x=0$
(B) $x=\left(n+\frac{1}{2}\right) \pi$
(C) $x=n \pi$
(D) no value of x

Sol. $\quad \sin x+i \cos 2 x=\cos x+i \sin 2 x$
$\Rightarrow \tan x=1$ and $\tan 2 x=1$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+\frac{\pi}{4}$ and $\mathrm{x}=\frac{\mathrm{n} \pi}{2}+\frac{\pi}{8}$
$\Rightarrow \mathrm{x} \in\left\{\ldots, \frac{-7 \pi}{4}, \frac{-3 \pi}{4}, \frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4}, \ldots \ldots\right\}$
$\cap\left\{\ldots, \frac{-7 \pi}{8}, \frac{-3 \pi}{8}, \frac{\pi}{8}, \frac{5 \pi}{8}, \frac{9 \pi}{8}, \ldots \ldots\right\}$
\Rightarrow there is no common value of x.
Ans. [D]

Ex. 9 If A, B and C are respectively the complex numbers $3+4 \mathrm{i}, 5-2 \mathrm{i},-1+16 \mathrm{i}$, then $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are-
(A) collinear
(B) vertices of right-angle triangle
(C) vertices of isosceles triangle
(D) vertices of equilateral triangle

Sol. Given points are $\mathrm{A}(3,4), \mathrm{B}(5,-2)$ and $\mathrm{C}(-1,16)$.
Now slope of $A B=\frac{-2-4}{5-3}=-3$
slope of $\mathrm{BC}=\frac{16+2}{-1-5}=-3$
\therefore slope of $\mathrm{AB}=$ slope of BC
$\Rightarrow A, B, C$ are collinear.
Ans.[A]
Ex. 10 If complex numbers z_{1}, z_{2} and 0 are vertices of an equilateral triangle, then $\mathrm{z}_{1}{ }^{2}+\mathrm{Z}_{2}{ }^{2}-\mathrm{Z}_{1} \mathrm{Z}_{2}$ is equal to-
(A) 0
(B) $\mathrm{Z}_{1}-\mathrm{Z}_{2}$
(C) $\mathrm{z}_{1}+\mathrm{z}_{2}$
(D) 1

Sol. $\quad z_{1}, z_{2}, 0$ are vertices of an equilateral triangle, so we have

$$
\mathrm{z}_{1}^{2}+\mathrm{z}_{2}^{2}+0^{2}=\mathrm{z}_{1} \mathrm{z}_{2}+\mathrm{z}_{2} .0+0 . \mathrm{z}_{1}
$$

(a property)
$\Rightarrow \mathrm{z}_{1}{ }^{2}+\mathrm{z}_{2}{ }^{2}=\mathrm{z}_{1} \mathrm{z}_{2}$
$\Rightarrow \mathrm{z}_{1}{ }^{2}+\mathrm{z}_{2}^{2}-\mathrm{z}_{1} \mathrm{z}_{2}=0$.
Ans. [A]
Ex. 11 If $w=\frac{z-(1 / 5) i}{z}$ and $|w|=1$, then complex number z lies on
(A) a parabola
(B) a circle
(C) a line
(D) None of these

Sol. $|\mathrm{w}|=1 \Rightarrow|\mathrm{z}-(1 / 5) \mathrm{i}|=|\mathrm{z}|$
$\Rightarrow|z-(1 / 5) i|^{2}=|z|^{2}$
$\Rightarrow|x+i y-1 / 5 i|^{2}=|x+i y|^{2}$
$\Rightarrow x^{2}+(y-1 / 5)^{2}=x^{2}+y^{2}$
$\Rightarrow-2 / 5 y+1 / 25=0$
$\Rightarrow 10 \mathrm{y}=1$, which is a line. Ans.[C]
Ex. 12 If complex numbers $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{z}_{3}$ represent the vertices of an equilateral triangle such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right| ;$ then-
(A) $I\left(z_{1}+z_{2}+z_{3}\right)=0$
(B) $z_{1}+z_{2}+z_{3}=0$
(C) $R\left(z_{1}+z_{2}+z_{3}\right)=0$
(D) None of these

Sol. Let A, B, C denote complex numbers $\mathrm{z}_{1}, \mathrm{z}_{2}$, Z_{3}.
Then $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right| \Rightarrow \mathrm{OA}=\mathrm{OB}=\mathrm{OC}$
$\Rightarrow \mathrm{O}$ is the circumcentre of $\triangle \mathrm{ABC}$
$\Rightarrow \mathrm{O}$ is the centroid of $\triangle \mathrm{ABC}$
(\because it is equilateral)
$\Rightarrow \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}=\overrightarrow{0}$
$\Rightarrow \mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}=0$
Ans.[B]

Ex. 13 If z_{1}, z_{2} are any two complex numbers and a, b are any two real numbers, then $\left|a z_{1}-b z_{2}\right|^{2}+\left|b z_{1}+a z_{2}\right|^{2}$ is equal to-
(A) $\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\left(\left|\mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2}\right)$
(B) $a^{2} b^{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
(C) $(a+b)^{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
(D) None of these

Sol. Expression
$=\left(a z_{1}-b z_{2}\right) \overline{\left(a z_{1}-b z_{2}\right)}$

$$
+\left(\mathrm{bz}_{1}+\mathrm{az} \mathrm{z}_{2}\right) \overline{\left(\mathrm{bz} \mathrm{z}_{1}+\mathrm{az} 2\right)}
$$

$=\left(\mathrm{az}_{1}-\mathrm{bz}_{2}\right)\left(\mathrm{a} \overline{\mathrm{z}}_{1}-\mathrm{b} \overline{\mathrm{z}}_{2}\right)$

$$
+\left(b z_{1}+a z_{2}\right)\left(b \bar{z}_{1}+a \bar{z}_{2}\right)
$$

$=a^{2}\left|z_{1}\right|^{2}+b^{2}\left|z_{2}\right|^{2}+b^{2}\left|z_{1}\right|^{2}+a^{2}\left|z_{2}\right|^{2}$
$=\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
Ans.[A]
Ex. 14 If $z=x+i y$, and if $\log _{\sqrt{3}} \frac{|z|^{2}-|z|+1}{2+|z|}<2$ then z lies in the interior of the circle
(A) $|z|=4$
(B) $|z|=3$
(C) $|z|=2$
(D) $|z|=5$

Sol. $\quad \log _{\sqrt{3}} \frac{|z|^{2}-|z|+1}{2+|z|}<2$
$\Rightarrow \frac{|z|^{2}-|z|+1}{2+|z|}<(\sqrt{3})^{2}$
$\Rightarrow|z|^{2}-|z|+1<6+3|z|$
$\Rightarrow|z|^{2}-4|z|-5<0$
$\Rightarrow(|z|-5)(|z|+1) \Rightarrow(|z|-5)<0$
since $|z|+1>0 \Rightarrow|z|<5$
Hence z lies inside the circle $|z|=5$
Ans.[D]
Ex. 15 The amplitude of $1-\cos \theta-\mathrm{i} \sin \theta$ is-
(A) $\frac{1}{2}(\pi-\theta)$
(B) $\frac{\theta}{2}$
(C) $-\frac{\pi}{2}+\frac{\theta}{2}$
(D) $\frac{\pi}{2}+\frac{\theta}{2}$

Sol. Let
$\mathrm{z}=1-\cos \theta-\mathrm{i} \sin \theta=\mathrm{r}(\cos \phi+\mathrm{i} \sin \phi)$
$\therefore \quad \tan \phi=-\frac{\sin \theta}{1-\cos \theta}$

$$
=\frac{2 \sin (\theta / 2) \cos (\theta / 2)}{2 \sin ^{2}(\theta / 2)}
$$

$$
\begin{aligned}
& =-\cot (\theta / 2) \\
& =-\tan \left(\frac{\pi}{2}-\frac{\theta}{2}\right)
\end{aligned}
$$

or $\quad \tan \phi=\tan \left(\frac{\theta}{2}-\frac{\pi}{2}\right)$
$\therefore \quad \operatorname{amp}(\mathrm{z})=\frac{\theta}{2}-\frac{\pi}{2}$
Ans.[C]

Ex. 16 If $x_{n}=\cos \left(\pi / 2^{n}\right)+i \sin \left(\pi / 2^{n}\right)$, then $\mathrm{x}_{1} \mathrm{X}_{2} \mathrm{x}_{3}$ $\ldots \infty$ is equal to-
(A) -1
(B) 1
(C) 0
(D) ∞

Sol. $\mathrm{x}_{1} \mathrm{X}_{2} \mathrm{x}_{3} \ldots \ldots . . . \infty$
$=\cos \left(\frac{\pi}{2}+\frac{\pi}{2^{2}}+\frac{\pi}{2^{3}}+\ldots ..\right)$
$+\mathrm{i} \sin \left(\frac{\pi}{2}+\frac{\pi}{2^{2}}+\frac{\pi}{2^{3}}+\ldots ..\right)$
Ans.[A]

Ex. 17 If $z_{1}=10+6 i, z_{2}=4+6 i$ and z is a complex number such that amp $\left(\frac{z-z_{1}}{z-z_{2}}\right)=\frac{\pi}{4}$, then $|z-7-9 i|$ is equal to-
(A) $2 \sqrt{2}$
(B) $\sqrt{2}$
(C) $3 \sqrt{2}$
(D) $2 \sqrt{3}$

Sol. If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$, then $\operatorname{amp}\left(\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}-\mathrm{z}_{2}}\right)=\frac{\pi}{4}$
$\Rightarrow x^{2}+y^{2}-14 x-18 y+112=0$
Now $|\mathrm{z}-7-9 \mathrm{i}|$
$=\sqrt{x^{2}+y^{2}-14 x-18 y+130}$
$=3 \sqrt{2}($ from 1$)$
Ans.[C]
Ex. 18 The polar form of complex number $\mathrm{z}=\frac{\{\cos (\pi / 3)-\mathrm{i} \sin (\pi / 3)\}(\sqrt{3}+\mathrm{i})}{\mathrm{i}-1}$ is-
(A) $\sqrt{2}\left(\cos \frac{7 \pi}{12}+\mathrm{i} \sin \frac{7 \pi}{12}\right)$
(B) $\sqrt{2}\left(\cos \frac{13 \pi}{12}+\mathrm{i} \sin \frac{13 \pi}{12}\right)$
(C) $\sqrt{2}\left(\cos \frac{11 \pi}{12}+\mathrm{i} \sin \frac{11 \pi}{12}\right)$
(D) None of these

Sol. Here $|z|$
$=\frac{|\cos (\pi / 3)-i \sin (\pi / 3)||\sqrt{3}+i|}{|i-1|}=\frac{2}{\sqrt{2}}=\sqrt{2}$
Again $\operatorname{amp}(z)=\operatorname{amp}\{\cos (\pi / 3)-i \sin (\pi / 3)\}$
$+\operatorname{amp}(\sqrt{3}+i)-\operatorname{amp}(-1+i)$
$=-\frac{\pi}{3}+\frac{\pi}{6}-\left(\pi-\frac{\pi}{4}\right)=-\frac{11 \pi}{12}$
Therefore
$\mathrm{z}=\sqrt{2}\left\{\cos \left(-\frac{11 \pi}{12}\right)+\mathrm{i} \sin \left(-\frac{11 \pi}{12}\right)\right\}$
$=\sqrt{2}\left\{\cos \left(-\frac{11 \pi}{12}+2 \pi\right)+\mathrm{i} \sin \left(-\frac{11 \pi}{12}+2 \pi\right)\right\}$
$=\sqrt{2}\left\{\cos \left(\frac{13 \pi}{12}\right)+\mathrm{i} \sin \left(\frac{13 \pi}{12}\right)\right\} \quad$ Ans.[B]
Ex. 19 If $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$ then $\left(\frac{z_{1}}{z_{2}}\right)$ is
(A) zero or purely imaginary
(B) purely imaginary
(C) purely real
(D) None of these

Sol. $\quad \because\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}+2\left|z_{1}\right|\left|z_{2}\right| \cos \left(\theta_{1}-\theta_{2}\right)$
\therefore If $\theta_{1}-\theta_{2}= \pm \frac{\pi}{2}$;
Then $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$
i.e. $\operatorname{Arg}\left(\mathrm{z}_{1}\right)-\operatorname{Arg}\left(\mathrm{z}_{2}\right)= \pm \frac{\pi}{2}$
$\Rightarrow \operatorname{Arg}\left(\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}\right)= \pm \frac{\pi}{2}$
$\Rightarrow \frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}$ is purely imaginary
Ans.[B]

Ex. 20 Square root of $-8-6 i$ is -
(A) $\pm(3+i)$
(B) $\pm(1+\mathrm{i} \sqrt{3})$
(C) $\pm(1-3 i)$
(D) $\pm(1+3 \mathrm{i})$

Sol. Let $\sqrt{-8-6 i}= \pm(a+i b)$

$$
\begin{array}{ll}
\Rightarrow & -8-6 \mathrm{i}=\mathrm{a}^{2}-\mathrm{b}^{2}+2 \mathrm{iab} \\
\Rightarrow & \mathrm{a}^{2}-\mathrm{b}^{2}=-8 \\
& 2 \mathrm{ab}=-6 \Rightarrow \mathrm{ab}=-3 \\
& \left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}=\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)^{2}+4 \mathrm{a}^{2} \mathrm{~b}^{2} \\
& =(-8)^{2}+(-6)^{2} \\
& =64+36=100 \\
\Rightarrow & \mathrm{a}^{2}+\mathrm{b}^{2}=10 \tag{3}
\end{array}
$$

from equation (2) and (3)

$$
\mathrm{a}=1, \mathrm{~b}=-3
$$

So, $\sqrt{-8-6 \mathrm{i}}= \pm(1-3 \mathrm{i})$
Ans.[C]
Ex. 21 If $z=x+i y, z^{1 / 3}=a-i b$ and $\frac{x}{a}-\frac{y}{b}=k\left(a^{2}-\right.$ b^{2}), then k equals-
(A) -2
(B) 2
(C) 4
(D) 0

Sol. \quad Here $x+i y=(a-i b)^{3}$

$$
\begin{aligned}
& =\left(a^{3}-3 a b^{2}\right)+i\left(-3 a^{2} b+b^{3}\right) \\
\Rightarrow \quad & x=a^{3}-3 a b^{2}, y=b^{3}-3 a^{2} b \\
\Rightarrow \quad & \frac{x}{a}-\frac{y}{b}=\left(a^{2}-3 b^{2}\right)-\left(b^{2}-3 a^{2}\right) \\
& =4\left(a^{2}-b^{2}\right) \\
\Rightarrow \quad & k=4
\end{aligned}
$$

Ans.[C]
Ex. 22 The complex number z having least positive argument which satisfy the condition $|z-25 i| \leq 15$ is -
(A) 25 i
(B) $12+25 i$
(C) $16+12 \mathrm{i}$
(D) $12+16 i$

Sol. The required complex number is point of contact P as shown in the figure. $\mathrm{C}(0,25)$ is the centre of the circle and radius is 15 .
Now $|z|=$ OP

$$
\begin{aligned}
& =\sqrt{\mathrm{OC}^{2}-\mathrm{PC}^{2}} \\
& =\sqrt{625-225}=20
\end{aligned}
$$

$\operatorname{amp}(\mathrm{z})=\theta=\angle \mathrm{XOP}=\angle \mathrm{OCP}$
$\therefore \quad \cos \theta=\frac{\mathrm{PC}}{\mathrm{OC}}=\frac{15}{25}=\frac{3}{5}$
and

$$
\sin \theta=\frac{\mathrm{OP}}{\mathrm{OC}}=\frac{20}{25}=\frac{4}{5}
$$

$\therefore \mathrm{z}=20\left(\frac{3}{5}+\frac{4}{5} \mathrm{i}\right)$

$$
=12+16 \mathrm{i} .
$$

Ans.[D]

Ex. 23 If $|\mathrm{z}+2 \mathrm{i}| \leq 1$, then greatest and least value of $|z-\sqrt{3}+i|$ are-
(A) 3,1
(B) $\infty, 0$
(C) 1,3
(D) None of these

Sol. $\quad|z-\sqrt{3}+i|=|(z+2 i)-(\sqrt{3}+i)|$

$$
\begin{aligned}
& \leq|(\mathrm{z}+2 \mathrm{i})|+|(\sqrt{3}+\mathrm{i})| \\
& \leq 1+2=3
\end{aligned}
$$

\Rightarrow The greatest value of $|\mathrm{z}-\sqrt{3}+\mathrm{i}|$ is 3 .
Again $|z-\sqrt{3}+i|$

$$
\begin{aligned}
& =|(\mathrm{z}+2 \mathrm{i})-(\sqrt{3}+\mathrm{i})| \\
& \geq|\sqrt{3}+\mathrm{i}|-|\mathrm{z}+2 \mathrm{i}| \\
& \geq 2-1=1
\end{aligned}
$$

Thus least value of $|z-\sqrt{3}+i|$ is 1. Ans.[A]

Ex. 24 The value of $\sum_{\mathrm{k}=1}^{6}\left(\sin \frac{2 \pi \mathrm{k}}{7}-\mathrm{i} \cos \frac{2 \pi \mathrm{k}}{7}\right)$ is -
(A) -i
(B) 0
(C) -1
(D) i

Sol. $\quad\left(\sin \frac{2 \pi \mathrm{k}}{7}-\mathrm{i} \cos \frac{2 \pi \mathrm{k}}{7}\right)$

$$
=-\mathrm{i}\left(\cos \frac{2 \pi \mathrm{k}}{7}+\mathrm{i} \sin \frac{2 \pi \mathrm{k}}{7}\right)=-\mathrm{i} \mathrm{e}^{\frac{2 \pi \mathrm{ki}}{7}}
$$

$\therefore \sum_{\mathrm{k}=1}^{6}\left(\sin \frac{2 \pi \mathrm{k}}{7}-\mathrm{i} \cos \frac{2 \pi \mathrm{k}}{7}\right)$
$=-i\left[e^{\frac{2 \pi i}{7}}+e^{\frac{4 \pi i}{7}}+\ldots . .6\right.$ terms $]$
$=-i e^{\frac{2 \pi i}{7}}\left\{\frac{1-e^{\frac{12 \pi i}{7}}}{1-e^{\frac{2 \pi i}{7}}}\right\}$ $\left(\because \mathrm{e}^{2 \pi \mathrm{i}}=1\right)$
$=-\mathrm{i}\left\{\frac{\mathrm{e}^{\frac{2 \pi \mathrm{i}}{7}}-1}{1-\mathrm{e}^{\frac{2 \pi \mathrm{i}}{7}}}\right\}=\mathrm{i}$
Ans.[D]

Ex. 25 If z_{0} is the circumcenter of an equilateral triangle with vertices z_{1}, z_{2}, z_{3}, then $z_{1}^{2}+z_{2}^{2}+$ $\mathrm{z}_{3}{ }^{2}$ is equal to-
(A) $\mathrm{z}_{0}{ }^{2}$
(B) $2 \frac{z_{0}{ }^{2}}{3}$
(C) $3 z_{0}{ }^{2}$
(D) $\frac{\mathrm{z}_{0}{ }^{2}}{3}$

Sol. Since z_{1}, z_{2}, z_{3}, are vertices of an equilateral triangle, so

$$
\begin{align*}
& z_{1}^{2}+z_{2}^{2}+z_{3}^{2} \\
= & z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1} \tag{1}
\end{align*}
$$

Further the circumcenter of an equilateral triangle is same as its centroid, so

$$
\begin{aligned}
& \mathrm{z}_{0}=\left(\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}\right) / 3 \\
\Rightarrow \quad & 9 \mathrm{z}_{0}^{2}= \\
& =\mathrm{z}_{1}^{2}+\mathrm{z}_{2}^{2}+\mathrm{z}_{3}^{2} \\
& +2\left(\mathrm{z}_{1} \mathrm{z}_{2}+\mathrm{z}_{2} \mathrm{z}_{3}+\mathrm{z}_{3} \mathrm{z}_{1}\right) \\
& =\mathrm{z}_{1}^{2}+\mathrm{z}_{2}^{2}+\mathrm{z}_{3}^{2}+2\left(\mathrm{z}_{1}^{2}+\mathrm{z}_{2}^{2}+\mathrm{z}_{3}^{2}\right) \\
\therefore \quad & \mathrm{z}_{1}^{2}+\mathrm{z}_{2}^{2}+\mathrm{z}_{3}^{2}=3 \mathrm{z}_{0}^{2} .
\end{aligned}
$$

Ans.[C]

